淺水波,非線性光學、電磁學、等離子物理、凝聚態(tài)物理、生物及化學、通訊等領域均存在非線性波運動。對其數(shù)學模型——波方程的解研究有重要價值。上世紀90年代,數(shù)學家發(fā)現(xiàn)了行波方程的非光滑的孤粒子解(peakon)、有限支集解(compacton)和圈解(loopsolution)等,為理解這些解,特別是非光滑解的出現(xiàn),導致用動力系統(tǒng)的分支理論及方法對奇行波方程進行研究的新方向。本書介紹兩類奇行波方程的研究的動力系統(tǒng)方法,及對大量數(shù)學物理問題的應用。

平面動力系統(tǒng)的若干經(jīng)典問題 : 英文版造價信息

市場價 信息價 詢價
材料名稱 規(guī)格/型號 市場價
(除稅)
工程建議價
(除稅)
行情 品牌 單位 稅率 供應商 報價日期
Corkeen軟木地系統(tǒng) 厚度(mm):10 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
Corkeen軟木地系統(tǒng) 厚度(mm):15 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
Corkeen軟木地系統(tǒng) 厚度(mm):20 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
Corkeen軟木地系統(tǒng) 厚度(mm):50 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
Corkeen軟木地系統(tǒng) 厚度(mm):90 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
Corkeen軟木地系統(tǒng) 厚度(mm):70 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
Corkeen軟木地系統(tǒng) 厚度(mm):40 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
Corkeen軟木地系統(tǒng) 厚度(mm):110 查看價格 查看價格

繡林康體

m2 13% 廣州市繡林康體設備有限公司
材料名稱 規(guī)格/型號 除稅
信息價
含稅
信息價
行情 品牌 單位 稅率 地區(qū)/時間
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2009年1季度信息價
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2008年2季度信息價
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2007年8月信息價
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2007年7月信息價
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2007年3月信息價
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2006年4月信息價
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2010年3季度信息價
液壓柜(動力系統(tǒng)) 查看價格 查看價格

臺班 廣州市2010年2季度信息價
材料名稱 規(guī)格/需求量 報價數(shù) 最新報價
(元)
供應商 報價地區(qū) 最新報價時間
動力系統(tǒng) /|1套 1 查看價格 上海瑞仕格醫(yī)療科技有限公司 全國   2021-11-11
動力系統(tǒng) SD380V|4組 1 查看價格 艾信智慧醫(yī)療科技術發(fā)展(蘇州)有限公司 全國   2021-11-11
動力系統(tǒng) 進口風機|1套 3 查看價格 深圳市中菁環(huán)境科技有限公司 廣東   2021-05-26
備用動力系統(tǒng) 根據(jù)風機、濕簾等設備設施用電功率,配備合適發(fā)電機系統(tǒng),應對突發(fā)情況.艾默森3C3EX10KS型,三進三出10KVA/8KW 在線式UPS電源.不含外接DC192V電池組.|2臺 1 查看價格 廣州市岑安機電設備有限公司 全國   2019-04-29
負壓動力系統(tǒng)設備 DR-FYXT-111800×1400×1800mm|1套 1 查看價格 風機動力系統(tǒng) /|9套 1 查看價格 上海瑞仕格醫(yī)療科技有限公司 全國   2021-11-11
起吊動力系統(tǒng)控制箱 配套0.8t卷揚機和350×350×900mm抓斗|1套 1 查看價格 山東龍起重工有限公司 全國   2021-03-25
液壓動力系統(tǒng)閥門 普通水閘|1個 3 查看價格 泉州閩水水利機械制造有限公司 廣東   2019-07-04

封面

Planar Dynamical Systems:Selected Classical Problems

Preface

Chapter 1 Basic Concept and Linearized Problem ofSystems

Chapter 2 Focal Values, Saddle Values and SingularPoint Values

Chapter 3 Multiple Hopf Bifurcations

Chapter 4 Isochronous Center In Complex Domain

Chapter 5 Theory of Center-Focus and Bifurcation ofLimit Cycles at Infinity of a Class ofSystems

Chapter 6 Theory of Center-Focus and Bifurcationsof Limit Cycles for a Class of MultipleSingular Points

Chapter 7 On Quasi Analytic Systems

Chapter 8 Local and Non-Local Bifurcations ofPerturbed Zq-Equivariant HamiltonianVector Fields

Chapter 9 Center-Focus Problem and Bifurcations ofLimit Cycles for a Z2-Equivariant CubicSystem

Chapter 10 Center-Focus Problem and Bifurcations ofLimit Cycles for Three-Multiple NilpotentSingular Points

Bibliography

Index

封底

平面動力系統(tǒng)的若干經(jīng)典問題 : 英文版內容簡介常見問題

平面動力系統(tǒng)的若干經(jīng)典問題 : 英文版內容簡介文獻

英文版外貿合同(中英文對照版) 英文版外貿合同(中英文對照版)

格式:doc

大?。?span id="wm2u4qq" class="single-tag-height">60KB

頁數(shù): 8頁

評分: 4.7

外貿合同 Contract( sales confirmation) 合同編號(Contract No.): _______________ 簽訂日期(Date) :___________ 簽訂地點(Signed at) :___________ 買方:__________________________ The Buyer:________________________ 地址:__________________________ Address: _________________________ 電話(Tel):___________傳真(Fax):__________ 電子郵箱(E-mail):______________________ 賣方:________________

立即下載
英文版會邀請函 英文版會邀請函

格式:pdf

大?。?span id="isoo86m" class="single-tag-height">60KB

頁數(shù): 3頁

評分: 4.7

英文版年會邀請函 英文版年會邀請函【一】 Dear sir/madam: On [date], we will host an evening of celebration in honor of the retirement of [name], President of [company]. You are cordially invited to attend the celebration at [hotel], [location], on [date] from [time] to [time]. [name] has been the President of [company] since [year]. During this period, [company] expanded its business from [size] to [size].

立即下載

《平面動力系統(tǒng)的若干經(jīng)典問題(英文版)》介紹兩類奇行波方程的研究的動力系統(tǒng)方法,及對大量數(shù)學物理問題的應用。

該書介紹平面動力系統(tǒng)定性理論有意義的研究進展。內容包括中心和等時中心問題、多重Hopf分支、平面等變向量場的局部和全局分支。這和Hilbert的第16個問題直接相關?!镀矫嫦蛄繄龅娜舾山?jīng)典問題》可作為高等院校數(shù)學專業(yè)研究生的教材或教師的教學參考書,也可供相關專業(yè)的科研人員和工程技術人員參考。

Preface

1 Basic Concept and Linearized Problem of Systems

1.1 Basic Concept and Variable Transformation

1.2 Resultant of the Weierstrass Polynomial and Multiplicity of a Singular Point

1.3 Quasi—Algebraic Integrals of Polynomial Systems

1.4 Cauchy Majorant and Analytic Properties in a Neighborhood of an Ordinary Point

1.5 Classification of Elementary Singular Points and Linearized Problem

1.6 Node Value and Linearized Problem of the Integer—Ratio Node

1.7 Linearized Problem of the Degenerate Node

1.8 Integrability and Linearized Problem of Weak Critical Singular Point

1.9 Integrability and Linearized Problem of the Resonant Singular Point

2 Focal Values, Saddle Values and Singular Point Values

2.1 Successor Functions and Properties of Focal Values

2.2 Poincare Formal Series and Algebraic Equivalence

2.3 Linear Recursive Formulas for the Computation of Singular Point Values

2.4 The Algebraic Construction of Singular Values

2.5 Elementary Generalized Rotation Invariants of the Cubic Systems

2.6 Singular Point Values and Integrability Condition of the Quadratic Systems

2.7 Singular Point Values and Integrability Condition of the Cubic Systems Having Homogeneous Nonlinearities

3 Multiple Hopf Bifurcations

3.1 The Zeros of Successor Functions in the Polar Coordinates

3.2 Analytic Equivalence

3.3 Quasi Successor Function

3.4 Bifurcations of Limit Circle of a Class of Quadratic Systems

4 Isochronous Center In Complex Domain

4.1 Isochronous Centers and Period Constants

4.2 Linear Recursive Formulas to Compute Period Constants

4.3 Isochronous Center for a Class of Quintic System in the Complex Domain

4.3.1 The Conditions of Isochronous Center Under Condition C1

4.3.2 The Conditions of Isochronous Center Under Condition C2

4.3.3 The Conditions oflsochronous Center Under Condition C3

4.3.4 Non—Isochronous Center under Condition C4 and C1

4.4 The Method of Time—Angle Difference

4.5 The Conditions of Isochronous Center of the Origin for a Cubic System

5 Theory of Center—Focus and Bifurcation of Limit Cycles at Infinity of a Class of Systems

5.1 Definition of the Focal Values of Infinity

5.2 Conversion of Questions

5.3 Method of Formal Series and Singular Point Value of Infinity

5.4 The Algebraic Construction of Singular Point Values of Infinity

5.5 Singular Point Values at Infinity and Integrable Conditions for a Class of Cubic System

5.6 Bifurcation of Limit Cycles at Infinity

5.7 Isochronous Centers at Infinity of a Polynomial Systems

5.7.1 Conditions of Complex Center for System (5.7.6)

5.7.2 Conditions of Complex Isochronous Center for System (5.7.6)

6 Theory of Center—Focus and Bifurcations of Limit Cycles for a Class of Multiple Singular Points

6.1 Succession Function and Focal Values for a Class of Multiple Singular Points

6.2 Conversion of the Questions

6.3 Formal Series, Integral Factors and Singular Point Values for a Class of Multiple Singular Points

6.4 The Algebraic Structure of Singular Point Values of a Class of Multiple Singular Points

6.5 Bifurcation of Limit Cycles From a Class of Multiple Singular Points

6.6 Bifurcation of Limit Cycles Created from a Multiple Singular Point for a Class of Quartic System

6.7 Quasi Isochronous Center of Multiple Singular Point for a Class of Analytic System

7 On Quasi Analytic Systems

7.2 Reduction of the Problems

7.3 Focal Values, Periodic Constants and First Integrals of (7.2.3)

7.4 Singular Point Values and Bifurcations of Limit Cycles of Quasi—Quadratic Systems

7.5 Integrability of Quasi—Quadratic Systems

7.6 Isochronous Center of Quasi—Quadratic Systems

7.6.1 The Problem of Complex Isochronous Centers Under the Condition of C1

7.6.2 The Problem of Complex Isochronous Centers Under the Condition of C2

7.6.3 The Problem of Complex Isochronous Centers Under the Other Conditions

7.7 Singular Point Values and Center Conditions for a Class of Quasi—Cubic Systems

8 Local and Non—Local Bifurcations of Perturbed Zq—Equivariant Hamiltonian Vector Fields

8.1 Zq—Equivariant Planar Vector Fields and an Example

8.2 The Method of Detection Functions: Rough Perturbations of Zq— Equivariant Hamiltonian Vector Fields

8.3 Bifurcations of Limit Cycles of a 22— Equivariant Perturbed Hamiltonian Vector Fields

8.3.1 Hopf Bifurcation Parameter Values

8.3.2 Bifurcations From Heteroclinic or Homoclinic Loops

8.3.3 The Values of Bifurcation Directions of Heteroclinic and Homoclinic Loops

8.3.4 Analysis and Conclusions

8.4 The Rate of Growth of Hilbert Number H (n,) with n

8.4.1 Preliminary Lemmas

8.4.2 A Correction to the Lower Bounds of H (2k—1) Given in (Christopher and Lloyd, 1995)

8.4.3 A New Lower Bound for H (2k—1)

8.4.4 Lower Bound for H(3×2k—1—1)

9 Center—Focus Problem and Bifurcations of Limit Cycles for a Z2—Equivariant Cubic System

9.1 Standard Form of a Class of System (E3Z2)

9.2 Liapunov Constants, Invariant Integrals and the Necessary and Sufficient Conditions of the Existence for the Bi—Center

9.3 The Conditions of Six—Order Weak Focus and Bifurcations of Limit Cycles

9.4 A Class of (E3Z2) System With 13 Limit Cycles

9.5 Proofs of Lemma 9.4.1 and Theorem 9.4.1

9.6 The Proofs of Lemma 9.4.2 and Lemma 9.4.3

10 Center—Focus Problem and Bifurcations of Limit Cycles for Three—Multiple Nilpotent Singular Points

10.1 Criteria of Center—Focus for a Nilpotent Singular Point

10.2 Successor Functions and Focus Value of Three—Multiple Nilpotent Singular Point

10.3 Bifurcation of Limit Cycles Created from Three—Multiple Nilpotent Singular Point

10.4 The Classification of Three—Multiple Nilpotent Singular Points and Inverse Integral Factor

10.5 Quasi—Lyapunov Constants For the Three—Multiple Nilpotent Singular Point

10.6 Proof of Theorem 10.5.2

10.7 On the Computation of Quasi—Lyapunov Constants

10.8 Bifurcations of Limit Cycles Created from a Three—Multiple Nilpotent Singular Point of a Cubic System

Bibliography

Index

平面動力系統(tǒng)的若干經(jīng)典問題 : 英文版相關推薦
  • 相關百科
  • 相關知識
  • 相關專欄